Livermorium (Lv) – chemický prvek

Lv
116

Úvod

Livermorium (Lv) je syntetický, supertěžký a extrémně radioaktivní prvek, jehož všechny známé izotopy jsou vysoce nestabilní. Jeho protonové číslo je 116 a v periodické tabulce se řadí do 16. skupiny mezi chalkogeny, pod polonium. Vzhledem k výrobě pouhých několika desítek atomů a jejich okamžitému rozpadu nebyl nikdy pozorován v makroskopickém měřítku. Jeho běžný vzhled je tedy neznámý, ale teoreticky se předpokládá, že by se jednalo o pevný kov. V přírodě se vůbec nevyskytuje; získává se výhradně uměle v částicových urychlovačích bombardováním terčíků těžších prvků.

 

Vlastnosti

Livermorium (Lv), prvek s protonovým číslem 116, je extrémně radioaktivní, uměle připravený supertěžký prvek. Patří do 16. skupiny periodické tabulky, mezi takzvané chalkogeny, a nachází se v 7. periodě. Jeho vlastnosti nebyly přímo změřeny, jsou pouze teoreticky předpovězeny kvůli jeho extrémní nestabilitě a výrobě v počtu jednotlivých atomů. Předpokládá se, že se jedná o pevný kov s vysokou hustotou. Všechny jeho známé izotopy se rozpadají v řádu desítek milisekund, což znemožňuje detailní chemické studium. Nejstabilnější izotop ²⁹³Lv má poločas přibližně 60 ms. Kvůli relativistickým efektům se očekává, že bude vykazovat odlišné chování než lehčí chalkogeny.

 

Vznik názvu

Název prvku, livermorium, byl schválen v roce 2012. Je odvozen od Lawrence Livermore National Laboratory v Kalifornii v USA, která se na jeho objevu podílela společně s laboratoří v ruské Dubně. Jméno tak vzdává hold jak významnému výzkumnému centru, tak i městu Livermore, v němž sídlí.

 

Objev

Historie livermoria je spojena s mezinárodní vědeckou spoluprací. Prvek byl poprvé připraven v roce 2000 ve Spojeném ústavu jaderných výzkumů v Dubně, Rusko, týmem vedeným Jurijem Oganessianem. Na tomto významném experimentu se podíleli také vědci z Lawrence Livermore National Laboratory z Kalifornie, USA. Nový prvek vznikl v cyklotronu bombardováním terče z curia-248 urychlenými ionty vápníku-48. Samotné atomy livermoria nebyly pozorovány přímo, ale byly identifikovány na základě detekce produktů jejich následného alfa rozpadu. Objev byl oficiálně potvrzen v roce 2011 a v roce 2012 dostal prvek jméno na počest americké laboratoře.

 

Výskyt v přírodě

Výskyt livermoria v přírodě je nulový. Jedná se o výhradně umělý prvek, který na Zemi přirozeně neexistuje. Jakékoliv atomy, které mohly teoreticky vzniknout při dávných kosmických událostech, se kvůli extrémně krátkému poločasu rozpadu dávno přeměnily na jiné prvky. Způsob získávání je omezen na několik špičkových světových laboratoří s částicovými urychlovači. Připravuje se procesem jaderné fúze, kdy se terč vyrobený z curia-248 ostřeluje svazkem iontů vápníku-48. Celkově bylo připraveno jen několik desítek atomů, které existovaly zlomky sekundy. Nemá žádné komerční ani praktické využití, slouží výhradně pro základní vědecký výzkum.

 

Využití

Livermorium, jakožto uměle vytvořený supertěžký prvek, v současnosti nemá žádné praktické využití člověkem a v přírodě se vůbec nevyskytuje, jelikož jeho izotopy jsou extrémně nestabilní. Veškerý význam tohoto prvku spočívá výhradně v oblasti základního vědeckého výzkumu, kde jeho syntéza pomáhá vědcům lépe porozumět hranicím stability atomových jader a testovat teoretické modely chování hmoty. Bylo vyrobeno jen několik desítek atomů, které existovaly pouhé zlomky sekundy, což znemožňuje jakékoliv komerční, průmyslové nebo lékařské aplikace a činí jeho existenci čistě akademickou záležitostí.

 

Sloučeniny

Vzhledem k extrémně krátkému poločasu rozpadu livermoria nebyly dosud experimentálně připraveny ani pozorovány žádné jeho sloučeniny, a to ani uměle, ani se nevyskytují v přírodě. Není možné nashromáždit dostatečný počet atomů pro uskutečnění chemické reakce. Veškeré znalosti o jeho potenciální chemii pocházejí výhradně z teoretických výpočtů. Předpokládá se, že by se jako člen 16. skupiny mohl chovat podobně jako polonium. Teoretické modely naznačují možnou existenci oxidu livermoritého (LvO) nebo fluoridu livermoritého (LvF₂), avšak tyto hypotetické látky zůstávají čistě v rovině výpočetní chemie.

 

Zajímavosti

Předpokládá se, že livermorium je těkavý kov, jehož vlastnosti jsou silně ovlivněny relativistickými efekty. Tyto efekty, způsobené vysokou rychlostí elektronů v blízkosti těžkého jádra, pravděpodobně způsobí, že se jeho chemie bude výrazně lišit od lehčích prvků v jeho skupině, jako je síra. Jeho nejstabilnější známý izotop, livermorium-293, má poločas rozpadu přibližně 60 milisekund. Během svého rozpadu alfa se mění na flerovium-289. Jeho syntéza je součástí snahy dosáhnout takzvaného „ostrova stability“, hypotetické oblasti supertěžkých prvků s delšími poločasy rozpadu.

Mendelevium (Md) – chemický prvek

Md
101

Úvod

Mendelevium (Md) je syntetický, vysoce radioaktivní transuran. Jeho protonové číslo je 101 a v periodické tabulce se řadí mezi aktinoidy, což jsou těžké a nestabilní kovy. Jelikož bylo připraveno pouze nepatrné množství atomů, jeho běžný vzhled v makroskopickém měřítku není znám. Odborníci však předpokládají, že by se jednalo o stříbřitě bílý či šedý kov. V přírodě se tento prvek vůbec nevyskytuje. Získává se výhradně uměle v cyklotronech, a to bombardováním lehčích prvků, například einsteinia, přičemž existuje jen velmi krátkou dobu.

 

Vlastnosti

Mendelevium, značka Md a protonové číslo 101, je vysoce radioaktivní syntetický prvek patřící mezi aktinoidy. Vzhledem k tomu, že se připravuje pouze v nepatrných množstvích, nebyly jeho makroskopické fyzikální vlastnosti, jako je hustota nebo teplota tání, nikdy experimentálně stanoveny. Předpokládá se, že by mělo podobu stříbřitě bílého nebo šedého kovu. Všechny jeho izotopy jsou nestabilní, přičemž nejdelší poločas rozpadu má izotop ²⁵⁸Md, a to přibližně 51,5 dne. Chemicky se nejčastěji vyskytuje v oxidačním stavu +3, což je typické pro pozdní aktinoidy, ale na rozdíl od sousedních prvků vykazuje i překvapivě stabilní stav +2.

 

Vznik názvu

Prvek byl pojmenován na počest ruského chemika Dmitrije Ivanoviče Mendělejeva, tvůrce periodické tabulky prvků. Jeho objevitelé tak chtěli ocenit jeho geniální schopnost předpovědět vlastnosti dosud neobjevených prvků a vytvořit systém, který se stal základem moderní chemie. Bylo to poprvé, co byl prvek pojmenován po žijící osobě.

 

Objev

Prvek byl poprvé připraven v roce 1955 v Lawrence Berkeley National Laboratory týmem vědců pod vedením Alberta Ghirsa. Mezi další členy patřili Glenn T. Seaborg, Bernard Harvey a Gregory Choppin. Objev byl přelomový, protože mendelevium se stalo prvním prvkem syntetizovaným a identifikovaným doslova atom po atomu. Vzniklo bombardováním terčíku z einsteinia-253 alfa částicemi (jádry helia) v 60palcovém cyklotronu. Během prvního úspěšného experimentu bylo detekováno pouhých 17 atomů. Pojmenování na počest Dmitrije Mendělejeva, tvůrce periodické tabulky, bylo významným gestem uznání v období vrcholící studené války.

 

Výskyt v přírodě

Mendelevium se v zemské kůře ani v přírodě obecně vůbec nevyskytuje. Jedná se o čistě umělý prvek. Kvůli velmi krátkým poločasům rozpadu všech jeho známých izotopů by se jakékoli množství, které mohlo teoreticky vzniknout při formování sluneční soustavy, již dávno přeměnilo na jiné prvky. Získává se výhradně v laboratořích pomocí částicových urychlovačů. Produkce probíhá ostřelováním terčů z těžkých prvků, například einsteinia nebo bismutu, lehkými nabitými částicemi. Vytvořené množství je extrémně malé, často jen několik atomů, a slouží výhradně pro základní vědecký výzkum.

 

Využití

Mendelevium, jakožto syntetický a extrémně radioaktivní prvek, postrádá jakékoliv praktické komerční nebo průmyslové využití. Veškerý jeho význam spočívá výhradně v oblasti základního vědeckého výzkumu. Vědci jej vyrábějí v urychlovačích částic v nepatrném množství, doslova atom po atomu, aby studovali jeho jaderné a chemické vlastnosti. Tyto experimenty pomáhají ověřovat a rozšiřovat teorie o struktuře a stabilitě atomových jader nejtěžších prvků. V přírodě se mendelevium přirozeně nevyskytuje. Jeho izotopy mají příliš krátké poločasy rozpadu, takže jakékoliv množství, které by hypoteticky mohlo vzniknout, by se okamžitě rozpadlo.

 

Sloučeniny

Vzhledem k extrémní nestabilitě a nepatrnému množství vyrobeného mendelevia neexistují jeho makroskopické sloučeniny. Veškeré poznatky o jeho chemii pocházejí z experimentů s jednotlivými atomy v roztocích. Vědci prokázali, že ve vodném prostředí tvoří mendelevium nejčastěji ionty s oxidačním číslem +3, podobně jako ostatní aktinoidy. Bylo však také zjištěno, že může existovat v neobvykle stabilním stavu +2. V přírodě se žádné sloučeniny mendelevia nenacházejí, protože prvek samotný v ní neexistuje. Jeho pomíjivá existence, trvající zlomky sekundy až desítky dní, znemožňuje jakoukoliv přirozenou chemickou interakci.

 

Zajímavosti

Jednou z nejvýraznějších chemických vlastností mendelevia je jeho překvapivě stabilní oxidační stav +2, což je u pozdních aktinoidů poměrně neobvyklé. Zatímco se očekávala dominance stavu +3, podobně jako u jeho lehčích sousedů, mendelevium snadno přechází do dvojmocné formy. Tento jev je studován pomocí komplexních radio-chromatografických metod, které sledují chování jednotlivých atomů. Veškeré experimenty musí probíhat extrémně rychle, jelikož nejstabilnější známý izotop má poločas rozpadu jen asi padesát jedna dní. Celkové množství mendelevia, které bylo kdy na světě syntetizováno, je odhadováno na pouhých několik tisíc atomů.

Tennessin (Ts) – chemický prvek

Ts
117

Úvod

Tennessin (Ts) je supertěžký, uměle připravený chemický prvek. Je extrémně radioaktivní a nestabilní, s poločasy rozpadu nejstabilnějších izotopů v řádu desítek milisekund. Jeho protonové číslo je 117, čímž se řadí do 17. skupiny periodické tabulky mezi halogeny, jako jejich nejtěžší známý zástupce. Jelikož bylo připraveno jen několik atomů, jeho skutečný vzhled není znám. Předpokládá se však, že by na rozdíl od ostatních halogenů mohl být tmavou pevnou látkou s kovovými vlastnostmi. V přírodě se nevyskytuje, získáváme ho výhradně v laboratořích v částicových urychlovačích.

 

Vlastnosti

Tennessin, s protonovým číslem 117 a značkou Ts, je supertěžký syntetický prvek, který uzavírá 7. periodu a patří do skupiny halogenů. Vzhledem k jeho extrémní radioaktivitě a nestabilitě jsou jeho vlastnosti převážně teoreticky předpovídány. Očekává se, že bude za standardních podmínek v pevném skupenství a na rozdíl od lehčích halogenů by mohl vykazovat spíše polokovové nebo dokonce kovové vlastnosti. Tento jev je přisuzován silným relativistickým efektům ovlivňujícím jeho valenční elektrony. Jeho elektronegativita by měla být nejnižší v celé skupině a jeho chemické chování je zcela neprozkoumané.

 

Vznik názvu

Název prvku je odvozen od amerického státu Tennessee. Toto jméno bylo zvoleno na počest tamních výzkumných institucí, které se na jeho objevu významně podílely, především Oak Ridge National Laboratory, Vanderbiltovy univerzity a University of Tennessee. Uznává tak přínos celého regionu k výzkumu prvků.

 

Objev

Objevení tennessinu je výsledkem rozsáhlé mezinárodní spolupráce mezi ruskými a americkými vědeckými týmy. První atomy byly úspěšně syntetizovány v roce 2010 ve Spojeném ústavu jaderných výzkumů v ruské Dubně. Vědci bombardovali speciálně připravený terč z berkelia-249 urychlenými ionty vápníku-48, což vedlo ke vzniku několika málo atomů izotopů Ts-293 a Ts-294. Experiment potvrdil teoretické předpovědi o existenci prvku 117 a zaplnil mezeru v periodické tabulce. Objev byl následně potvrzen. V roce 2016 byl prvek oficiálně pojmenován tennessin (Ts) na počest státu Tennessee.

 

Výskyt v přírodě

Tennessin se v přírodě vůbec nevyskytuje. Všechny jeho izotopy jsou extrémně nestabilní s poločasy rozpadu v řádu milisekund, takže jakékoli atomy, které mohly existovat při vzniku Země, se dávno rozpadly. Získává se výhradně umělou syntézou ve špičkových jaderných laboratořích s částicovými urychlovači. Proces výroby je nesmírně náročný, nákladný a vyžaduje vzácné materiály. Jeho příprava spočívá v bombardování terče z vysoce radioaktivního berkelia-249 svazkem iontů vápníku-48. V jednom experimentu se podaří vyprodukovat jen několik jednotlivých atomů, což znemožňuje jakékoliv praktické využití.

 

Využití

Tennessin, jakožto supertěžký syntetický prvek, nemá v současnosti žádné praktické využití člověkem. Jeho extrémní nestabilita a poločas rozpadu v řádu milisekund znemožňují jakékoliv komerční nebo průmyslové aplikace. Jeho existence, omezená na pouhých několik vyrobených atomů, slouží výhradně pro účely základního vědeckého výzkumu. Vědci jeho studiem ověřují teorie o struktuře atomových jader a posouvají hranice známé periodické tabulky. V přírodě se tennessin na Zemi přirozeně nevyskytuje. Předpokládá se, že takto těžké prvky nemohou vzniknout v běžných hvězdných procesech a pokud by vznikly, okamžitě by se rozpadly.

 

Sloučeniny

Vzhledem k extrémní nestabilitě a okamžitému rozpadu nebyly dosud žádné sloučeniny tennessinu experimentálně připraveny ani pozorovány člověkem. Veškeré znalosti o jeho potenciální chemii pocházejí výhradně z komplexních teoretických výpočtů a počítačových modelů. Jako nejtěžší člen 17. skupiny by měl vykazovat vlastnosti halogenů, avšak se značnými odchylkami způsobenými relativistickými efekty. Předpokládá se, že by mohl tvořit například hydrid (TsH) nebo fluorid (TsF), ale mohl by vykazovat i polokovové vlastnosti. V přírodě se jeho sloučeniny nevyskytují, jelikož zde není přítomen ani samotný prvek.

 

Zajímavosti

Tennessin je druhý nejtěžší prvek, jaký byl kdy vytvořen, hned po oganessonu. Jeho atomové jádro je tak masivní, že u něj dochází k extrémně silným relativistickým efektům. Tyto efekty způsobují, že se jeho valenční elektrony pohybují rychlostí blízkou rychlosti světla, což dramaticky mění jeho předpokládané chemické i fyzikální vlastnosti. Na rozdíl od lehčích halogenů, jako je plynný chlor nebo kapalný brom, se předpokládá, že tennessin bude za standardních podmínek těkavá pevná látka s polokovovým charakterem. Jeho existence také poskytuje důležité údaje pro teorii „ostrova stability“.

Nobelium (No) – chemický prvek

No

Úvod

Nobelium (No) je vysoce radioaktivní, uměle připravený chemický prvek. Jeho protonové číslo je 102 a v periodické tabulce se řadí mezi aktinoidy. Jelikož bylo připraveno jen nepatrné množství v řádu jednotlivých atomů, jeho vzhled v makroskopickém měřítku není znám. Předpokládá se však, že by se jednalo o stříbřitě bílý nebo šedý kov. V přírodě se vůbec nevyskytuje, získává se výhradně v urychlovačích částic ostřelováním terčů z těžších prvků. Pro svou nestabilitu a krátký poločas rozpadu nemá žádné praktické využití mimo vědecký výzkum.

 

Vlastnosti

Nobelium (No) je syntetický radioaktivní prvek s protonovým číslem 102, patřící mezi aktinoidy. Jeho nejstabilnější známý izotop, ²⁵⁹No, má poločas rozpadu přibližně 58 minut, což extrémně komplikuje jeho studium ve větším množství. Předpokládá se, že v pevném stavu je to těžký, stříbřitě bílý nebo šedý kov, ale kvůli jeho nestabilitě a produkci jen v řádu atomů nebyly jeho makroskopické vlastnosti nikdy pozorovány. Unikátní chemickou vlastností nobelia je neobvykle stabilní oxidační stav +2 ve vodných roztocích, což ho odlišuje od ostatních aktinoidů, pro které je typičtější stabilnější stav +3.

 

Vznik názvu

Prvek byl pojmenován na počest Alfreda Nobela, švédského chemika, vynálezce dynamitu a zakladatele slavných Nobelových cen. Název navrhl tým vědců ze stockholmského Nobelova institutu, který jako první ohlásil jeho syntézu. I přes pozdější spory o prvenství objevu se jméno nobelium ujalo a bylo mezinárodně přijato.

 

Objev

Historie objevu nobelia je spjata s desetiletí trvající kontroverzí mezi vědeckými týmy. První, avšak později zpochybněné, ohlášení přišlo v roce 1957 z Nobelova institutu ve Švédsku, který navrhl název po Alfredu Nobelovi. Jejich výsledky se ale nepodařilo zopakovat. V následujících letech si objev nárokovaly i laboratoře v Berkeley v USA a Spojený ústav jaderných výzkumů v Dubně v tehdejším Sovětském svazu. Až práce ruského týmu pod vedením Georgije Fljorova z poloviny 60. let byla nakonec uznána jako první přesvědčivý a reprodukovatelný důkaz existence prvku 102.

 

Výskyt v přírodě

Nobelium se v přírodě vůbec nevyskytuje; je to čistě syntetický prvek. Všechny jeho známé izotopy mají velmi krátké poločasy rozpadu, přičemž ten nejstabilnější se rozpadne za necelou hodinu. Jakékoli atomy, které mohly teoreticky vzniknout při dávných kosmických událostech, jako jsou supernovy, se proto již dávno přeměnily na jiné prvky. Získává se výhradně v laboratořích pomocí částicových urychlovačů. Produkce probíhá bombardováním terčíků z těžkých prvků (např. kalifornium) svazky lehčích iontů (např. vápník). Tento proces je extrémně neefektivní, vzniká jen několik atomů, které slouží výhradně pro vědecký výzkum.

 

Využití

Nobelium nemá žádné praktické komerční využití, a to především kvůli své extrémní nestabilitě a velmi krátkému poločasu rozpadu nejstabilnějších izotopů. Jeho jediný význam tak spočívá výhradně v oblasti základního vědeckého výzkumu. Vědci jej vyrábějí v urychlovačích částic v nepatrných množstvích, často jen několik atomů najednou, aby studovali chování supertěžkých jader a posouvali hranice našeho poznání o hmotě. V přírodě se nobelium vůbec nevyskytuje, jelikož se jedná o čistě syntetický prvek. Veškeré atomy, které by mohly teoreticky vzniknout při kosmických událostech, by se okamžitě rozpadly.

 

Sloučeniny

Vzhledem k tomu, že se nobelium v přírodě nevyskytuje, neexistují ani jeho přirozené sloučeniny. Chemické studie prováděné člověkem jsou extrémně obtížné kvůli okamžitému radioaktivnímu rozpadu. Vědci pracují pouze s jednotlivými atomy v roztocích. Bylo však experimentálně potvrzeno, že nobelium překvapivě preferuje tvorbu stabilního dvojmocného kationtu No²⁺, čímž se odlišuje od většiny ostatních aktinoidů a připomíná spíše chování prvků jako vápník nebo baryum. Předpokládá se i existence méně stabilního trojmocného stavu No³⁺. Žádné pevné, vážitelné sloučeniny nobelia nebyly nikdy připraveny.

 

Zajímavosti

Jednou z největších chemických zajímavostí nobelia je jeho neobvykle stabilní oxidační stav +2. Zatímco většina ostatních aktinoidů tvoří nejstabilnější ionty v oxidačním stavu +3, nobelium tuto tendenci porušuje. Důvodem je jeho elektronová konfigurace [Rn] 5f¹⁴7s², kde plně zaplněná elektronová slupka 5f činí ion No²⁺ (se ztrátou dvou 7s elektronů) energeticky velmi výhodným. Toto chování ho silně přibližuje k jeho lanthanoidovému analogu, ytterbiu, a činí z něj klíčový prvek pro pochopení komplexních relativistických efektů v nejtěžších jádrech periodické tabulky.

Oganesson (Og) – chemický prvek

Og
118

Úvod

Oganesson (Og) je supertěžký, uměle vytvořený chemický prvek s protonovým číslem 118, což z něj činí nejtěžší známý prvek. V periodické tabulce se formálně řadí do 18. skupiny mezi vzácné plyny, ale jeho předpokládané chemické vlastnosti se od nich pravděpodobně výrazně liší. Je extrémně radioaktivní a nestabilní, s poločasem rozpadu kratším než milisekunda. Vzhledem k tomu, že bylo vytvořeno jen několik málo atomů, jeho běžný vzhled není znám. Teoretické modely však naznačují, že by na rozdíl od ostatních plynů mohl být pevnou látkou. V přírodě se nevyskytuje, získává se výhradně v urychlovačích částic.

 

Vlastnosti

Oganesson, se značkou Og a protonovým číslem 118, je nejtěžší známý prvek periodické tabulky. Nachází se v 18. skupině, což jej formálně řadí mezi vzácné plyny. Na rozdíl od svých lehčích protějšků se však předpokládá, že za standardních podmínek nebude plynný, ale bude tvořit pevnou látku. Důvodem jsou silné relativistické efekty ovlivňující jeho elektrony. Jeho odhadovaná hustota je velmi vysoká. Jako supertěžký prvek je extrémně radioaktivní a nestabilní, s poločasem rozpadu v řádu milisekund. Teoretické modely naznačují, že by mohl být chemicky reaktivnější než xenon či radon a tvořit stabilní sloučeniny, například s kyslíkem.

 

Vznik názvu

Název oganesson byl zvolen na počest ruského jaderného fyzika Jurije Oganesjana, vedoucího vědeckého týmu ve Spojeném ústavu jaderných výzkumů v Dubně. Oganesjan a jeho spolupracovníci se zasloužili o objev několika nejtěžších prvků periodické tabulky. Je jedním z mála vědců, po kterých byl prvek pojmenován za jejich života.

 

Objev

Objevení oganessonu je výsledkem dlouhodobé mezinárodní spolupráce mezi Spojeným ústavem jaderných výzkumů v Dubně v Rusku a Lawrencovou národní laboratoří v Livermore v USA. První atomy prvku 118 byly úspěšně syntetizovány v roce 2002, ačkoli potvrzení a analýza dat trvaly několik let. Týmy pod vedením Jurije Oganesjana bombardovaly terč z kalifornia-249 ionty vápníku-48. Vzniklo pouze několik málo atomů s velmi krátkou životností. Objev byl oficiálně uznán Mezinárodní unií pro čistou a aplikovanou chemii (IUPAC) v prosinci 2015. Prvek byl pojmenován na počest profesora Oganesjana.

 

Výskyt v přírodě

Oganesson se v přírodě vůbec nevyskytuje. Jedná se o výhradně uměle připravený, syntetický prvek. Jeho extrémní nestabilita a poločas rozpadu kratší než milisekunda znemožňují jeho existenci mimo laboratorní podmínky. Jakékoli atomy, které mohly vzniknout při dávných kosmických událostech, se již dávno rozpadly. Získává se výhradně v urychlovačích částic, konkrétně jadernou fúzí. Proces zahrnuje bombardování terče z vysoce radioaktivního kalifornia-249 urychlenými ionty vápníku-48. Tato metoda je nesmírně nákladná a neefektivní, jelikož za několik měsíců experimentů vznikne jen pár jednotlivých atomů pro vědecké studium.

 

Využití

Oganesson v současnosti nemá žádné praktické využití člověkem, a to z důvodu jeho extrémní nestability a poločasu rozpadu v řádu milisekund. Bylo syntetizováno jen několik málo atomů pro účely základního vědeckého výzkumu, který testuje hranice periodické tabulky a fyzikálních modelů. Jakékoli komerční nebo průmyslové aplikace jsou tak zcela vyloučeny. V přírodě se tento prvek vůbec nevyskytuje, jelikož i kdyby hypoteticky vznikl při extrémních vesmírných událostech, jako je srážka neutronových hvězd, okamžitě by se rozpadl na lehčí prvky. Jeho existence je omezena výhradně na laboratorní podmínky.

 

Sloučeniny

Doposud nebyly experimentálně připraveny ani pozorovány žádné sloučeniny oganessonu, neboť jeho atomy existují příliš krátce. Veškeré znalosti o jeho potenciální chemii pocházejí výhradně z teoretických výpočtů a počítačových simulací. Tyto modely naznačují, že na rozdíl od ostatních vzácných plynů by mohl být chemicky reaktivní a tvořit relativně stabilní sloučeniny, například s fluorem (OgF₄) nebo kyslíkem. Předpovídá se i existence dvouatomové molekuly Og₂. Jde však o čistě hypotetické látky. Jelikož se samotný prvek v přírodě nenachází, neexistují ani žádné jeho přirozeně se vyskytující sloučeniny.

 

Zajímavosti

Ačkoliv je oganesson řazen mezi vzácné plyny, předpokládá se, že za standardních podmínek by nebyl plynem, ale pevnou látkou, což je pro tuto skupinu naprosto unikátní. Jeho předpokládané vlastnosti jsou silně ovlivněny relativistickými jevy, které způsobují, že se jeho elektrony chovají odlišně. V důsledku těchto jevů se jeho elektronové slupky „rozmazávají“ a valenční elektrony tvoří spíše jakýsi „elektronový plyn“, což by mu mohlo dodávat vlastnosti polovodiče. Oganesson by tak mohl být prvním polovodivým prvkem 18. skupiny, což je zcela v rozporu s chováním jeho lehčích protějšků.

Lawrencium (Lr) – chemický prvek

Lr
103

Úvod

Lawrencium (Lr) je syntetický, vysoce radioaktivní chemický prvek s protonovým číslem 103. V periodické tabulce se řadí mezi aktinoidy a je posledním členem této skupiny. Kvůli extrémní nestabilitě a velmi krátkému poločasu rozpadu nebylo nikdy připraveno ve viditelném množství, proto je jeho skutečný vzhled neznámý. Předpokládá se však, že by šlo o pevný, stříbřitě bílý kov. V přírodě se lawrencium vůbec nenachází. Získává se výhradně umělou cestou v částicových urychlovačích, a to bombardováním terčů z těžších prvků, například kalifornia, lehkými ionty boru.

 

Vlastnosti

Lawrencium, chemická značka Lr a protonové číslo 103, je syntetický radioaktivní prvek, který uzavírá řadu aktinoidů v periodické tabulce. Předpokládá se, že za standardních podmínek je to pevná látka stříbřitého, kovového vzhledu. Všechny jeho izotopy jsou extrémně nestabilní. Nejdelší poločas rozpadu má izotop ²⁶⁶Lr, a to přibližně 11 hodin, což zásadně omezuje možnost jeho detailního studia. Chemicky se očekává, že bude vykazovat vlastnosti podobné luteciu a bude tvořit stabilní trojmocné kationty (Lr³⁺) ve vodných roztocích. Jeho pozice jako posledního aktinoidu je klíčová pro pochopení transuranových prvků.

 

Vznik názvu

Svůj název nese prvek na počest amerického fyzika Ernesta Orlanda Lawrence, vynálezce cyklotronu. Tento typ částicového urychlovače byl naprosto zásadní pro objev a syntézu mnoha umělých transuranových prvků. Lawrencium bylo poprvé připraveno v laboratoři, která byla pojmenována právě po něm.

 

Objev

Objev lawrencia je datován do roku 1961 a je spojen s prací vědeckého týmu v Lawrence Radiation Laboratory v Berkeley, Kalifornie. Skupina vedená Albertem Ghiorsem, Torbjørnem Sikkelandem a dalšími použila těžkoiontový lineární urychlovač (HILAC) k bombardování terčíku složeného z izotopů kalifornia jádry boru. Tímto procesem se jim podařilo syntetizovat první atomy nového prvku s protonovým číslem 103. Prvek byl pojmenován na počest Ernesta Orlanda Lawrence, vynálezce cyklotronu a zakladatele laboratoře. Objev a pojmenování byly předmětem mezinárodních debat, zejména se sovětským institutem v Dubně.

 

Výskyt v přírodě

Lawrencium se na Zemi v přírodě absolutně nevyskytuje. Jedná se o čistě umělý, syntetický prvek. Vzhledem k extrémně krátkým poločasům rozpadu všech jeho známých izotopů se jakékoliv potenciální množství, které mohlo existovat v raných fázích vesmíru, dávno přeměnilo na stabilnější prvky. Jeho výroba je možná výhradně v laboratořích pomocí částicových urychlovačů. Proces zahrnuje bombardování těžkých terčových prvků, například berkelia nebo kalifornia, svazky lehkých iontů. Vznikají tak pouze stopová množství, často jen jednotlivé atomy, které slouží výhradně pro základní vědecký výzkum.

 

Využití

Lawrencium nemá žádné praktické využití člověkem, a to z důvodu své extrémní nestability a vysoké radioaktivity. Vyrábí se uměle v urychlovačích částic, a to pouze v množství jednotlivých atomů, které se rozpadají v řádu maximálně hodin. Jeho existence je tak pomíjivá, že jakékoli komerční, průmyslové či medicínské aplikace jsou zcela vyloučeny. Jeho jediný význam spočívá v základním vědeckém výzkumu, kde jeho studium pomáhá vědcům testovat modely atomového jádra a pochopit chemické a fyzikální vlastnosti na samé hranici periodické tabulky. V přírodě se lawrencium vůbec nevyskytuje.

 

Sloučeniny

Vzhledem k extrémně krátkému poločasu rozpadu a výrobě pouze jednotlivých atomů nebyly nikdy připraveny žádné makroskopické sloučeniny lawrencia. Veškeré poznatky o jeho chemii pocházejí z experimentů s jednotlivými atomy a teoretických výpočtů. Předpokládá se, že nejstabilnějším oxidačním stavem je Lr³⁺, což je typické pro pozdní aktinoidy. Tyto ionty by ve vodném roztoku tvořily hydratované komplexy. Některé výpočty naznačují i možnou existenci méně stabilního stavu Lr¹⁺, což by bylo pro aktinoid velmi neobvyklé. V přírodě se žádné sloučeniny lawrencia nevyskytují, protože prvek samotný není její součástí.

 

Zajímavosti

Lawrencium představuje chemický a fyzikální unikát, o jehož zařazení se vedou debaty, zda je posledním aktinoidem, nebo prvním přechodným kovem 7. periody. Důvodem je jeho anomální elektronová konfigurace, která se liší od teoretických předpokladů pro tuto pozici. Právě tato konfigurace by mohla umožňovat existenci neobvyklého oxidačního stavu +1. Všechny jeho fyzikální vlastnosti, jako je hustota, teplota tání nebo vzhled, jsou pouze teoreticky odhadovány, jelikož nikdy nebylo připraveno v takovém množství, aby bylo viditelné pouhým okem. Jde o prvek potvrzený experimentálně, ale známý převážně teoreticky.

Rutherfordium (Rf) – chemický prvek

Rf
104

Úvod

Rutherfordium (Rf) je syntetický, vysoce radioaktivní chemický prvek s protonovým číslem 104. V periodické tabulce se řadí mezi přechodné kovy do 4. skupiny, pod hafnium. Jelikož se vyrábí pouze v nepatrných množstvích o několika atomech a jeho izotopy se extrémně rychle rozpadají, jeho běžný vzhled není znám. Předpokládá se však, že by šlo o pevný, stříbřitě bílý kov. V přírodě se nevyskytuje, získáváme ho výhradně uměle v částicových urychlovačích, a proto ho najdeme pouze ve specializovaných výzkumných laboratořích po celém světě.

 

Vlastnosti

Rutherfordium (Rf) je syntetický, vysoce radioaktivní transaktinoid s protonovým číslem 104. V periodické tabulce se nachází v 7. periodě a 4. skupině, což jej chemicky řadí k titanu, zirkoniu a hafniu. Předpokládá se, že je to za standardních podmínek pevný kov s vysokou hustotou a stříbřitě bílým či šedým vzhledem. Všechny jeho známé izotopy jsou extrémně nestabilní s krátkými poločasy rozpadu, přičemž nejstabilnější izotop, ²⁶⁷Rf, má poločas přeměny pouze okolo 1,3 hodiny. Experimentální studie, provedené s jednotlivými atomy, potvrzují jeho očekávané chování, zejména tvorbu stabilního oxidačního stavu +4.

 

Vznik názvu

Prvek byl pojmenován na počest novozélandského fyzika Ernesta Rutherforda, který je považován za otce jaderné fyziky. Jeho zásadní objevy, jako například existence atomového jádra, položily základy moderního chápání struktury atomu. Název byl oficiálně přijat Mezinárodní unií pro čistou a užitou chemii (IUPAC).

 

Objev

Historie objevu rutherfordia je poznamenána vědeckou rivalitou během studené války mezi laboratořemi v Sovětském svazu a Spojených státech. První syntézu ohlásil v roce 1964 tým ze Spojeného ústavu jaderných výzkumů v Dubně, který navrhl název kurčatovium (Ku). Jejich data však nebyla považována za dostatečně průkazná. V roce 1969 americký tým z Lawrence Berkeley Laboratory, vedený Albertem Ghiorsem, prvek syntetizoval jinou reakcí a jejich výsledky byly potvrzeny. Navrhli název rutherfordium (Rf). Dlouholetý spor o prvenství a pojmenování byl vyřešen až v roce 1997, kdy IUPAC oficiálně potvrdila název rutherfordium.

 

Výskyt v přírodě

Rutherfordium se v přírodě vůbec nevyskytuje a je čistě syntetickým prvkem. Kvůli extrémně krátkým poločasům rozpadu všech jeho izotopů jakékoliv atomy, které mohly teoreticky vzniknout při hvězdných procesech, již dávno zanikly. Získává se výhradně v nepatrném množství v částicových urychlovačích. Jeho příprava spočívá v bombardování terčíků z těžkých prvků, například z kalifornia-249, urychlenými ionty lehčích prvků, jako je uhlík-12. Při těchto vysokoenergetických srážkách dochází k jaderné fúzi, která produkuje jen několik atomů rutherfordia za hodiny či dny experimentů, které se musí okamžitě analyzovat.

 

Využití

Rutherfordium se v přírodě vůbec nevyskytuje, jelikož je to uměle vytvořený prvek s extrémně krátkým poločasem rozpadu, a nemá tedy žádnou roli v biologických či geologických procesech. Jeho existence je omezena výhradně na laboratorní podmínky. Člověkem je využíváno pouze pro účely základního vědeckého výzkumu. Vědci ho syntetizují v urychlovačích částic v nepatrném množství, často jen několik atomů najednou, aby studovali vlastnosti supertěžkých jader, limity periodické tabulky a chování hmoty v extrémních podmínkách. Nemá žádné komerční, průmyslové ani medicínské aplikace.

 

Sloučeniny

V přírodě se žádné sloučeniny rutherfordia nenacházejí, protože prvek sám o sobě přirozeně neexistuje a okamžitě se rozpadá. Všechny jeho známé sloučeniny byly připraveny uměle a ve velmi malých množstvích, doslova atom po atomu. Experimentální chemie se zaměřuje na těkavé halogenidy, jako je tetrachlorid rutherfordia (RfCl₄) nebo tetrabromid rutherfordia (RfBr₄). Studium jejich chování, například při jaké teplotě sublimují, pomáhá vědcům potvrdit, že se rutherfordium chemicky podobá svým lehčím homologům v periodické tabulce, zejména hafniu, a ověřit tak teoretické předpovědi.

 

Zajímavosti

Rutherfordium je prvním transaktinoidem, což znamená, že je prvním prvkem nacházejícím se za řadou aktinoidů. Jeho chemické vlastnosti jsou silně ovlivněny relativistickými efekty, jelikož se elektrony v jeho obalu pohybují rychlostí blízkou rychlosti světla, což způsobuje změny v jejich energetických hladinách. Veškeré chemické experimenty s ním musí probíhat na úrovni jednotlivých atomů, což je technicky nesmírně náročné. Často se také objevuje jako meziprodukt v rozpadových řetězcích ještě těžších, nově objevených prvků, například kopernicia nebo flerovia.

Dubnium (Db) – chemický prvek

Db

Úvod

Dubnium (Db) je syntetický, vysoce radioaktivní a supertěžký prvek. Jeho protonové číslo je 105 a v periodické tabulce se řadí mezi přechodné kovy do 5. skupiny, hned pod tantal. Jeho vlastnosti nejsou plně prozkoumány, protože se vyrábí pouze v nepatrných množstvích a jeho nejstabilnější izotopy se rozpadají během několika hodin. V přírodě se vůbec nevyskytuje. Získáváme ho výhradně umělou cestou v částicových urychlovačích ostřelováním těžších prvků lehčími ionty. Předpokládá se, že by se za normálních podmínek jednalo o pevný, stříbřitě bílý kov.

 

Vlastnosti

Dubnium, chemická značka Db, je syntetický, radioaktivní prvek s protonovým číslem 105. Nachází se v 7. periodě a 5. skupině periodické tabulky, čímž se řadí mezi přechodné kovy. Jeho vlastnosti jsou odvozeny od jeho polohy; předpokládá se, že je to pevný kov s vysokou hustotou. Všechny jeho izotopy jsou nestabilní, přičemž nejstabilnější izotop, dubnium-268, má poločas přeměny okolo 28 hodin. Chemické experimenty, prováděné na jednotlivých atomech, potvrdily jeho podobnost s tantalem a niobem. Vytváří stabilní sloučeniny především v oxidačním stavu +5, což odpovídá jeho skupinovému zařazení. Jeho bod tání a varu nebyly nikdy přímo experimentálně stanoveny.

 

Vznik názvu

Původ názvu je odvozen od města Dubna v Rusku. V tomto městě sídlí Spojený ústav jaderných výzkumů (SÚJV), kde byl prvek poprvé syntetizován. Název tak oceňuje přínos tohoto významného mezinárodního vědeckého centra k objevování a výzkumu supertěžkých prvků v druhé polovině 20. století.

 

Objev

Objev prvku 105 byl předmětem sporu mezi dvěma vědeckými týmy během studené války. V roce 1968 ohlásil jeho syntézu tým z Spojeného ústavu jaderných výzkumů v Dubně v Sovětském svazu. Navrhli název nielsbohrium (Ns) na počest dánského fyzika Nielse Bohra. Nezávisle na nich v roce 1970 oznámili objev i vědci z Lawrence Berkeley Laboratory v Kalifornii, USA. Tito navrhovali jméno hahnium (Ha) po německém chemikovi Ottu Hahnovi. Mezinárodní unie pro čistou a aplikovanou chemii (IUPAC) po letech sporů uznala přínos obou laboratoří. V roce 1997 byl jako kompromisní název oficiálně přijat dubnium (Db) na počest ruského výzkumného centra.

 

Výskyt v přírodě

Dubnium se v přírodě vůbec nevyskytuje. Je to výhradně uměle připravený prvek, vznikající v nepatrných množstvích v částicových urychlovačích. Jeho produkce je výsledkem jaderných reakcí, při nichž jsou terče z těžších prvků bombardovány ionty lehčích prvků. Například izotop dubnium-260 byl syntetizován bombardováním terče z kalifornia-249 jádry dusíku-15. Jiná metoda zahrnuje ostřelování americia-243 ionty neonu-22, což byla cesta použitá v ruské Dubně. Vzhledem k extrémní nestabilitě a krátkým poločasům přeměny je možné vyrobit jen několik atomů najednou. Tento prvek nemá žádné praktické využití a jeho výroba slouží výhradně pro základní vědecký výzkum.

 

Využití

Využití dubnia člověkem je v současné době nulové. Jelikož se jedná o extrémně nestabilní a radioaktivní transuran, který se vyrábí pouze uměle v laboratořích v množství jednotlivých atomů, neexistují pro něj žádné praktické aplikace. Jeho poločas rozpadu je příliš krátký na to, aby mohl být využit v průmyslu, medicíně nebo v jakémkoliv komerčním produktu. V přírodě se dubnium vůbec nevyskytuje. Není součástí zemské kůry, atmosféry ani biosféry a nemá žádnou biologickou roli. Jeho existence je omezena výhradně na specializovaná výzkumná centra, kde je krátkodobě syntetizováno pro vědecké účely.

 

Sloučeniny

V přírodě se sloučeniny dubnia nenacházejí, protože samotný prvek je čistě umělého původu. Veškeré známé sloučeniny byly připraveny člověkem v laboratorních podmínkách, a to ve stopových množstvích, často jen několik molekul najednou. Jedná se o velmi nestabilní látky, které existují jen po nepatrný zlomek času. Vědcům se podařilo v plynné fázi připravit a studovat například halogenidy jako pentachlorid dubnia nebo pentabromid dubnia. Cílem těchto experimentů není výroba materiálu, ale potvrzení chemických vlastností prvku a ověření jeho zařazení do páté skupiny periodické tabulky pod niob a tantal.

 

Zajímavosti

Jako prvek sedmé periody a páté skupiny periodické tabulky by mělo mít vlastnosti podobné tantalu. U takto těžkých jader se však výrazně projevují relativistické efekty. Obrovský náboj jádra způsobuje, že se elektrony na vnitřních slupkách pohybují rychlostí blízkou rychlosti světla, což ovlivňuje i chování vnějších, valenčních elektronů. To může vést k odchylkám od očekávaných chemických vlastností. Jeho chemie je studována neuvěřitelně náročnými metodami, doslova atom po atomu. Objev izotopu s poločasem rozpadu přesahujícím jeden den představuje pro vědce klíčový milník, protože umožňuje provádět složitější chemické experimenty.

Seaborgium (Sg) – chemický prvek

Sg
106

Úvod

Seaborgium (Sg) je syntetický, extrémně radioaktivní chemický prvek. Jeho protonové číslo je 106 a v periodické tabulce se řadí do 6. skupiny mezi přechodné kovy, konkrétně pod wolfram. Vzhledem k tomu, že bylo připraveno pouze nepatrné množství atomů s velmi krátkým poločasem rozpadu, jeho vzhled není experimentálně potvrzen. Předpokládá se však, že se jedná o pevný kov stříbřité barvy. V přírodě se vůbec nevyskytuje. Získává se výhradně uměle v jaderných laboratořích a částicových urychlovačích bombardováním jader jiných prvků, například kalifornia kyslíkem.

 

Vlastnosti

Seaborgium (Sg) je syntetický, vysoce radioaktivní prvek s protonovým číslem 106. Nachází se v 6. skupině a 7. periodě, přímo pod wolframem, což předurčuje jeho vlastnosti. Předpokládá se, že se jedná o pevný kov s vysokou hustotou a stříbřitým vzhledem. Jeho chemie je typická pro těžké homology chromu a molybdenu. Experimentálně byla potvrzena existence jeho těkavých sloučenin, jako jsou oxychloridy a hexakarbonyl, které dokazují jeho typické chování jako přechodného kovu v oxidačním stavu +6. Všechny izotopy jsou extrémně nestabilní, nejstabilnější má poločas rozpadu jen několik minut.

 

Vznik názvu

Pojmenování prvku bylo na počest amerického jaderného chemika Glenna T. Seaborga, nositele Nobelovy ceny. Seaborg se významně podílel na objevu deseti transuranů, včetně plutonia. Jde o jediný prvek pojmenovaný po žijící osobě v době jeho oficiálního schválení, což v té době vyvolalo jisté kontroverze.

 

Objev

Objev seaborgia je spojen se soupeřením dvou vědeckých týmů v roce 1974. V červnu ohlásil tým z Ústavu jaderných výzkumů v Dubně v Sovětském svazu, vedený Georgijem Fljorovem, syntézu prvku bombardováním olova jádry chromu. V září téhož roku nezávisle oznámila skupina z Lawrence Berkeley Laboratory v USA, v čele s Albertem Ghiorsem, vytvoření jiného izotopu ostřelováním kalifornia jádry kyslíku. Následoval dlouholetý spor o prvenství a název, známý jako „transfermiové války“. Američané navrhli název seaborgium na počest Glenna T. Seaborga, což bylo kontroverzní, protože vědec byl stále naživu. Mezinárodní unie pro čistou a užitou chemii (IUPAC) nakonec v roce 1997 oficiálně potvrdila název seaborgium, čímž spor definitivně ukončila.

 

Výskyt v přírodě

Seaborgium se v přírodě vůbec nevyskytuje. Je to výhradně uměle připravený prvek. Vzhledem k extrémně krátkým poločasům rozpadu všech jeho známých izotopů nemohl žádný atom tohoto prvku přežít od vzniku Země a neexistují ani žádné známé přírodní procesy, které by jej vytvářely. Jeho příprava probíhá výhradně v laboratořích s pomocí částicových urychlovačů. Produkce je založena na principu jaderné fúze, kdy se těžší terčové jádro, například kalifornium-249, ostřeluje svazkem lehčích iontů, jako je kyslík-18. Tímto procesem vzniká jen několik jednotlivých atomů, které jsou okamžitě separovány a identifikovány na základě jejich charakteristického radioaktivního rozpadu. Jedná se o velmi nákladný a technicky náročný proces.

 

Využití

Seaborgium nemá v současné době žádné praktické využití v průmyslu, medicíně ani v běžném životě. Důvodem je jeho extrémní nestabilita a velmi krátký poločas rozpadu, který se u nejstabilnějších izotopů pohybuje v řádu minut. V laboratořích bylo připraveno pouze několik jednotlivých atomů, což znemožňuje jeho komerční či jakékoli jiné uplatnění. Jeho jediný význam tak spočívá výhradně v oblasti základního vědeckého výzkumu. Vědcům slouží jako modelový prvek pro studium chemických a fyzikálních vlastností supertěžkých prvků a pro testování teoretických předpovědí o chování hmoty. V přírodě se nevyskytuje.

 

Sloučeniny

V přírodě se žádné sloučeniny seaborgia nenacházejí, protože samotný prvek je čistě syntetický. Veškeré známé sloučeniny byly připraveny uměle v laboratoři během velmi složitých experimentů, které pracovaly s jednotlivými atomy. Chemici předpokládali, že se seaborgium bude chovat podobně jako jeho lehčí homolog wolfram, a experimenty to potvrdily. Podařilo se syntetizovat například extrémně těkavý hexakarbonyl seaborgia (Sg(CO)₆) a také oxyhalogenidy, jako je dichlorid-oxid seaborgičitý (SgO₂Cl₂) nebo difluorid-oxid seaborgičitý (SgO₂F₂). Příprava a studium těchto několika molekul představuje vrchol experimentální jaderné chemie.

 

Zajímavosti

Chemické vlastnosti seaborgia jsou silně ovlivněny relativistickými efekty. Vzhledem k obrovskému kladnému náboji jádra se elektrony na vnitřních slupkách pohybují rychlostmi blízkými rychlosti světla, což zvyšuje jejich hmotnost a smršťuje jejich orbitaly. Tento jev následně ovlivňuje i valenční elektrony, a proto se chemie seaborgia mírně odlišuje od toho, co bychom očekávali prostou extrapolací vlastností od wolframu. Předpokládá se, že by mělo být za standardních podmínek pevným kovem s vysokou hustotou. Jeho nejstabilnější známé izotopy se rozpadají emisí částic alfa, čímž se přeměňují na jádra rutherfordia.

Bohrium (Bh) – chemický prvek

Bh

Úvod

Bohrium (Bh) je uměle připravený, vysoce radioaktivní chemický prvek. Jeho protonové číslo je 107, což ho řadí do 7. skupiny periodické tabulky mezi přechodné kovy, konkrétně pod rhenium. V přírodě se vůbec nevyskytuje; získává se výhradně v laboratořích bombardováním těžších jader lehčími ionty v částicových urychlovačích. Kvůli extrémní nestabilitě a krátkému poločasu rozpadu byl připraven jen v množství několika atomů. Proto nevíme, jak běžně vypadá, ale předpokládá se, že by za normálních podmínek šlo o stříbřitě bílý či šedý pevný kov.

 

Vlastnosti

Bohrium (Bh), s protonovým číslem 107, je syntetický, extrémně radioaktivní prvek. V periodické tabulce se nachází v 7. skupině pod rheniem, což předurčuje jeho chemické chování. Předpokládá se, že je to těžký, pevný kov stříbřitého vzhledu. Jeho nejstabilnější známý izotop, ²⁷⁰Bh, má poločas přeměny přibližně jednu minutu, což znemožňuje studium makroskopických vzorků. Experimenty s jednotlivými atomy potvrdily, že tvoří stabilní oxidační stav +7, podobně jako jeho lehčí homology. Bylo prokázáno, že vytváří těkavý oxychlorid BhO₃Cl. Veškeré další fyzikální vlastnosti, jako hustota či teplota tání, jsou pouze teoretickými odhady.

 

Vznik názvu

Název prvku byl zvolen na počest významného dánského fyzika Nielse Bohra (1885–1962). Bohr je jedním ze zakladatelů kvantové mechaniky a jeho model atomu zásadně přispěl k pochopení atomové struktury. Pojmenování prvku po něm je tak uznáním jeho klíčového přínosu moderní fyzice a chemii.

 

Objev

Objev prvku 107 byl předmětem vědeckého sporu mezi laboratořemi v Sovětském svazu a Německu. První nepotvrzené náznaky syntézy ohlásil tým v Dubně roku 1976. Jednoznačný a potvrzený objev však uskutečnil až v roce 1981 tým pod vedením Petera Armbrustera v německém Darmstadtu (GSI). Podařilo se jim to bombardováním terče z bismutu-209 urychlenými jádry chromu-54, čímž vznikl izotop bohria-262 s jediným nadbytečným neutronem. Prvek byl pojmenován na počest slavného dánského fyzika Nielse Bohra, klíčové postavy ve vývoji kvantové mechaniky. Jméno „bohrium“ bylo oficiálně přijato IUPAC v roce 1997.

 

Výskyt v přírodě

Bohrium se v přírodě vůbec nevyskytuje; je to čistě syntetický prvek. Neexistuje v zemské kůře a veškeré jeho atomy byly vytvořeny člověkem. Způsob jeho získávání je výhradně laboratorní a probíhá v částicových urychlovačích. Vzniká procesem jaderné fúze, kdy se terč z těžkého prvku, například bismutu-209, bombarduje urychlenými ionty lehčího prvku, jako je chrom-54. Tento proces je extrémně neefektivní, produkující jen několik atomů během dlouhých experimentů. Kvůli okamžitému radioaktivnímu rozpadu a nepatrnému množství nemá bohrium žádné praktické využití a jeho význam je čistě vědecký.

 

Využití

Bohrium, jako uměle vytvořený prvek s extrémně krátkým poločasem rozpadu, nemá žádné praktické komerční ani průmyslové využití. Jeho existence je omezena na laboratoře, kde je produkováno v počtu jednotlivých atomů. Jediné jeho využití je proto čistě vědecké a spočívá v základním výzkumu. Vědci studují jeho vlastnosti, aby lépe porozuměli chování supertěžkých jader, testovali hranice periodické tabulky a ověřovali teoretické modely jaderné stability a chemických vazeb ovlivněných relativistickými efekty. V přírodě se bohrium vůbec nevyskytuje, protože všechny jeho izotopy jsou nestabilní a okamžitě se rozpadají.

 

Sloučeniny

Vzhledem k neexistenci bohria v přírodě se zde nevyskytují ani žádné jeho přírodní sloučeniny. Veškeré známé sloučeniny byly připraveny uměle v rámci experimentů s jednotlivými atomy. Nejlépe prostudovanou sloučeninou je oxychlorid bohria (BhO₃Cl). Tato látka byla vytvořena reakcí atomu bohria se směsí kyslíku a chlorovodíku. Její těkavost a chování při chromatografii potvrdily, že se bohrium chemicky podobá svým lehčím homologům v 7. skupině, zejména rheniu. Předpokládá se, že bohrium tvoří nejstabilnější sloučeniny v oxidačním stavu +7, což odpovídá jeho pozici v periodické tabulce.

 

Zajímavosti

Produkce bohria je extrémně neefektivní; při experimentech vzniká zhruba jeden atom za několik hodin bombardování terče těžkými ionty. Chemické vlastnosti tohoto prvku jsou silně ovlivněny relativistickými efekty, kdy se elektrony v blízkosti těžkého jádra pohybují rychlostí blížící se rychlosti světla. To způsobuje změny v energetických hladinách a ovlivňuje reaktivitu. Všechny chemické experimenty s bohriem se provádějí technikou „chemie jednoho atomu“, kdy se sleduje a analyzuje chování jediného atomu, což představuje vrchol experimentální citlivosti a technické náročnosti.

error: Stahujte 15 000 materiálů v naší online akademii 🎓.